
The cell thread module class shown below implements the Game-of-Life cell including the four

transition rules.

Some observations about the cell thread module code are as follows:

class cell: public threadModule

{

 inputStream<bool> inStrm[nNEIGHBORS]; // Input streams

 outputStream<bool> outStrm; // Output stream

 bool cellState; // cell state

 void code() // Thread-domain code

 {

 int g, d, liveCount;

 bool neighborState;

 for (g = 0; g < nGENERATIONS; ++g) // Do generations

 {

 outStrm << cellState; // Put cellState into outStrm

 liveCount = 0; // Reset liveCount

 for (d = 0; d < nNEIGHBORS; ++d)// For each direction

 {

 inStrm[d] >> neighborState; // Get neighbor state

 liveCount += neighborState; // Increment if

 } // neighbor is alive

 cellState = (cellState == 1) ?

 ((liveCount == 2) || (liveCount == 3)) :

 (liveCount == 3); // Update cellState

 }

 }

public:

 cell() // Constructor

 {

 int d;

 for (d = 0; d < nNEIGHBORS; ++d) // Set inStrm

 { // directions

 inStrm[d].setDirection((TsDirection)d);

 }

 outStrm.setVisibility(tsVISIBLE); // Make outStrm visible

 } // outside array

 void setState(bool b) // Set cell state

 {

 cellState = b;

 }

};

a. The eight cell data members in the array

 inputStream<bool> inStrm[nNEIGHBORS];

are the input streams through which a cell receives cell states, of type bool, from its eight

neighbors.

b. The cell data member

 outputStream<bool> outStrm;

is the single output streams through which a cell sends its state, of type bool, to its eight

neighbors and to the display module (see below).

c. The cell member function

 void code()

contains the thread-domain code associated with the cell. It is ordinary C code with the

exception of a single TruStream put to outStrm:

 outStrm << cellState;

and a TruStream get from each inStrm:

 inStrm[d] >> neighborState;

d. The statement

 outStrm << cellState;

puts the cell’s current state into outStrm. That data value is then broadcast to the cell’s eight

neighbors and to the display module.

e. The inner loop

 for (d = 0; d < nNEIGHBORS; ++d)

cycles through the first 8 directions of the enumeration type:

 typedef enum { tsNORTH = 0,
 tsNORTHEAST = 1,
 tsEAST = 2,
 tsSOUTHEAST = 3,
 tsSOUTH = 4,
 tsSOUTHWEST = 5,
 tsWEST = 6,
 tsNORTHWEST = 7,
 tsALLDIRECTIONS = 8 } TsDirection;

f. The statement

 inStrm[d] >> neighborState;

gets the state of the neighbor connected to inStrm[d] (see below).

g. The statement

 cellState = (cellState == 1) ?
 ((liveCount == 2) || (liveCount == 3)) :
 (liveCount == 3);

implements the four Game-of-Life rules:

1. Any live cell with fewer than two live neighbours dies, as if caused by underpopulation.

2. Any live cell with two or three live neighbours lives on to the next generation.

3. Any live cell with more than three live neighbours dies, as if by overpopulation.

4. Any dead cell with exactly three live neighbours becomes a live cell, as if by

reproduction.

And that’s it for cell’s thread-domain code.

We now come to the two public member functions of cell:

 cell()

 void setState(bool b)

cell() is the default constructor for the cell class. Within the body of cell():

The loop

 for (d = 0; d < nNEIGHBORS; ++d)

cycles through the first 8 directions of the enumeration type TsDirection.

The statement

 inStrm[d].setDirection((TsDirection)d);

calls the inputStream member function

 void setDirection(TsDirection);

to set the direction attribute of inStrm[d]. The default value for this attribute for both input and

output streams is tsALLDIRECTIONS.

The statement

 outStrm.setVisibility(tsVISIBLE);

calls the outputStream member function

 void setVisibility(TsVisibility);

where TsVisibility is the enumeration type

 typedef enum { tsNOTVISIBLE = 0,
 tsUNCONNECTEDVISIBLE = 1,
 tsOUTWARDVISIBLE = 2,
 tsVISIBLE = 3 } TsVisibility;

to set the visibility attribute of outStrm. The attribute is used by the interconnect member function

of the streamModule class, and by the member operator >> of the module class (see below).

Definitions:

• tsNONEVISIBLE No instances of the output stream are visible outside the enclosing

stream module.

• tsUNCONNECTEDVISIBLE Only dangling instances of the output stream (instances not

connected to a stream) are visible outside the enclosing stream module.

• tsOUTWARDVISIBLE Only outward facing instances of the output stream in a module

array are visible outside the enclosing stream module. (An output-stream instance is

outward facing if it is on the periphery of the array facing outward.)

• tsALLVISIBLE All instances of the output stream are visible outside the enclosing stream

module.

The default value for the visibility attribute of both input and output streams is

tsUNCONNECTEDVISIBLE, which is fine for the input streams of cells in the Game-of-Life array.

That’s because they are all connected, and because there is no need to make them visible outside

the array. The cell output stream, however, is a different story since we need to connect the output

streams of the GOL cells to the display module (see below). We therefore set the visibility attribute

of the cell output stream to tsVISIBLE.

Last on our list is the cell member function

 void setState(bool b)

It is used by the GameOfLifeArray stream module to initialize the states of cells in the Game-of-

Life array.

