
The Game-Of-Life stream module shown below connects the Game-of-Life array to the display to

construct the Game of Life.

Some observations about GameOfLife:

a. Lego® blocks are a world-wide phenomenon due to their ability to create arbitrarily

complex structures by simply snapping blocks together as illustrated in Figure 1(a). The

TruStream module operator >> has a similar ability: With it, a programmer can create

arbitrarily complex TruStream structures by simply snapping modules together. In our

case, snapping two modules together means connecting the outputs of one module to the

inputs of the other module.

(a) Lego® Blocks (b) TruStream Modules
Figure 1. Snapping Blocks and Modules Together

class GameOfLife: public streamModule

{

 GameOfLifeArray GOLA; // GameOfLife object

 display D; // display object

public:

 GameOfLife() // Constructor

 {

 GOLA >> D; // Connect outputs of GOLA to inputs of D

 end(); // Housekeeping

 }

};

>>

b. The module operator >> has two alternate prototypes:

 module module::operator >> (module);
 module module::operator << (module);

and two corresponding forms:

 M1 >> M2
 M2 << M1

where M1 and M2 are modules (either thread or stream). In both cases, the visible output

streams of module M1 are connected to the visible input streams of M2.

c. In the GameOfLife constructor, the statement

 GOLA >> D;

connects the nRowsXnCols output-stream array of GOLA – arising from the output streams of

the cell–module array in GOLA – to the nRowsXnCols input-stream array of D as illustrated in

Figure (b).

d. And that completes construction of the TruStream program for the Game-of-Life cellular

automaton.

