It’s no secret that I love just about everything to do with what we now refer to as STEM; that is, science, technology, engineering, and math. When I was a kid, my parents gifted me with what was, at that time, a state-of-the-art educational electronics kit containing a collection of basic components (resistors, capacitors, inductors), a teensy loudspeaker, some small (6-volt) incandescent bulbs… that sort of thing. Everything was connected using a patch-board of springs (a bit like the 130-in-1 Electronic Playground from SparkFun).

The funny thing is, now that I come to look back on it, most electronics systems in the real world at that time weren’t all that much more sophisticated than my kit. In our house, for example, we had one small vacuum tube-based black-and-white television in the family room and one rotary-dial telephone that was hardwired to the wall in the hallway. We never even dreamed of color televisions and I would have laughed my socks off if you’d told me that the day would come when we’d have high-definition color televisions in almost every room in the house, smart phones so small you could carry them your pocket and use them to take photos and videos and make calls around the world, smart devices that you could control with your voice and that would speak back to you… the list goes on.

Now, of course, we have the Internet of Things (IoT), which boasts more “things” than you can throw a stick at (according to Statista, there were ~22 billion IoT devices in 2018, there will be ~38 billion in 2025, and there are expected to be ~50 billion by 2030).

One of the decisions required when embarking on an IoT deployment pertains to connectivity. Some devices are hardwired, many use Bluetooth or Wi-Fi or some form of wireless mesh, and many more employ cellular technology as their connectivity solution of choice.

In order to connect to a cellular network, the IoT device must include some form of subscriber identity module (SIM). Over the years, the original SIMs (which originated circa 1991) evolved in various ways. A few years ago, the industry saw the introduction of embedded SIM (eSIM) technology. Now, the next-generation integrated SIM (iSIM) is poised to shake the IoT world once more.

Panel members Loic Bonvarlet (upper left), Brian Partridge (upper right), Juan Nogueira (lower left), and Jan Jongboom (bottom right) (Click image to see a larger version)

“But what is iSIM,” I hear you cry. Well, I’m glad you asked because, by some strange quirk of fate, I’ve been invited to host a panel discussion — Accelerating Innovation on the IoT Edge with Integrated SIM (iSIM) — which is being held under the august auspices of

In this webinar — which will be held on Thursday 20 May 2021 from 10:00 a.m. to 11:00 a.m. CDT — I will be joined by four industry gurus to discuss how cellular IoT is changing and how to navigate through the cornucopia of SIM, eSIM, and iSIM options to decide what’s best for your product. As part of this, we will see quick-start tools and cool demos that can move you from concept to product. Also (and of particular interest to your humble narrator), we will experience the supercharge potential of TinyML and iSIM.

The gurus in question (and whom I will be questioning) are Loic Bonvarlet, VP Product and Marketing at Kigen; Brian Partridge, Research Director for Infrastructure and Cloud Technologies at 451 Research; Juan Nogueira, Senior Director, Connectivity, Global Technology Team at FLEX; and Jan Jongboom, CTO and Co-Founder at Edge Impulse.

So, what say you? Dare I hope that we will have the pleasure of your company and that you will be able to join us to (a) tease your auditory input systems with our discussions and (b) join our question-and-answer free-for-all at the end?