As you may recall, a group of my friends are currently engaged in a quest to Resurrect 21-Segment Victorian Displays using modern technologies. The original devices, whose patent was applied for in 1898, involved incandescent bulbs and a complicated electromechanical switch as a control mechanism. Our modern interpretation features tricolored WS2812B LEDs and a microcontroller.
As part of this, my chum Steve Manley in the UK has designed three circuit boards: a control board, a power distribution board, and a prototyping board. Just for giggles and grins, he’s had each type of board implemented in a different color: control (red), power (green), and proto (blue). Ideally, we would have preferred for the power board to be red and the control board to be green but — for reasons unknown — having the heavier weight copper required for the power distribution board would have been much more expensive if presented on a red substrate, so we went with the flow.
Steve has really gone to town with regard to the control board. The main plug-in microcontroller unit (MCU) can be a Teensy LC, Teensy 3.2, or a Teensy 3.6. The board shown here has a Teensy 3.6 (upper left), which is the one I’ll be using (32-bit Arm Cortex-M4F, 180 MHz, 1 MB Flash, 256 KB RAM). There’s also a Seeeduino XIAO (lower right) that’s outrageously overqualified for the task for which it’s being used, which is to detect and process any infrared (IR) control signals and format them for use by the main MCU.

There are also five push-button switches used to implement control functions, two optional trim-pots for manual control of the audio sensitivity and display brightness, an optional light-dependent resistor (LDR) used for auto-dimming the display, an optional IR sensor, and an optional Electret microphone, which is accompanied by two audio jacks; one for audio line-in and one for headphones-out. As opposed to mounting these components directly on the board, they can be located remotely and connected via headers or screw block terminals (in the case of the switches, remote versions can be connected in parallel with the on-board devices).
However, I fear we have wandered off into the weeds. Last week, my boards arrived from Steve, so this past weekend I started connecting everything together. Unfortunately, in my enthusiasm, I soldered the first couple of headers onto the wrong side of the LED boards. “Oh dear,” I said to myself (or words to that effect) when I spotted my mistake. “Not to worry,” I thought, “I’ll just fetch my helping hands and have these off in a jiffy.”
I knew which toolbox the helping hands were in, so I ambled off to retrieve them. The main assembly was just where I expected it to be, but the alligator clips (crocodile clips in the UK) were nowhere to be found. “Well, that’s a bit of a surprise,” I said (or words to that effect).
I must admit to being a tad miffed at this point. I had my heart set on soldering, and nothing was going to get in my way. You can only imagine my delight to discover that Hobby Lobby sells a rinky-dink set of helping hands for only $9.99. Since there is a store just 15 minutes away from our house, I raced over there, purchased a set, and had my incorrectly attached headers de-soldered before the little scamps had even realized they were on the wrong side of the board.

The thing is that, while I was Googling for local sources of helping hands in the first place, I discovered that there are some really useful looking versions around, like the NOEVSBIG six-arm helping hands on Amazon.
Generally speaking, I tend to be a happy-chappy who is not prone to wasting time lusting over things of a material nature. In this case, however, I must admit to having a case of “helping hands envy” (I’m not proud of myself and I shall make sure to chastise myself soundly later).
On the one hand (no pun intended), I rarely use the helping hands I already own because I have other tools to aid in assembling boards. However, when the occasion demands, these little rascals can be just what you need, and having a multi-appendage version like the NOEVSBIG six-arm would be a jolly handy addition to my tool collection (I know, “handy,” I really couldn’t help myself).
What? How did my assembly go? Well, that’s very kind of you to enquire. I wasn’t going to mention it because I’m not one to boast, but since you asked…
In the image below, we see the front panel / diffuser / 3D-shell / LED PCB stack. The power distribution board (green) is already mounted. Five pairs of red-green (power-ground) wires are seen toward the rear, while five twisted pairs of signal-ground wires used to upload data to the boards are seen in the foreground (these twisted pairs were salvaged from a short piece of old Ethernet cable).

Now things are really starting to come together. The image below shows the power distribution board (green / left), the control board (red / center), and the prototyping board (blue / right). The prototyping board has three 5V, 3.3V, 0V triplets running horizontally along the top, middle, and bottom of the board. Also, the power distribution board has its own 3.3V regulator, which will be used to drive the prototyping board in the fullness of time.

As I told my wife (Gina the Gorgeous), I could have wired everything up a lot faster if I was prepared to sacrifice neatness. The problem is that — deep in the mists of time — Steve served in the aircraft electrician’s department as part of his apprenticeship before moving on to research and development. As a result, his wiring always looks awesome, and — in the spirit of friendly competition — I didn’t want to be outdone. The downside was that, by the time I’d finished, the day was done and there was insufficient time remaining to start powering things up and playing with the software. Can you guess what I’ll be doing when I get home tonight? I shall, of course, report back further in a future column. Until then, as always, I welcome your comments, questions, and suggestions.
I’ll admit that I do have a bit of “helping hands envy” when it comes to some of the newer internet offerings. The helping hands that I have bear a very strong resemblance to the Hobby Lobby version shown in your picture. If I had time to indulge in some of my hobby projects, I’d consider an upgrade. Sad to say, my soldering iron has not seen a lot of use this last year.
I envy those of my friends who have proper workshops with things like reels of wire on spools on the wall so they can just reach up, pull, snip, bare, and solder… and just having the bench space to have a separate soldering station and other spaces for other tasks… as opposed to cramming everything onto the dining room table. which I share with my wife (Gina the Gorgeous) and her sewing machine 🙂
I’ll admit to being somewhat spoiled by the facilities and equipment where I work. Multiple solder stations (with microscopes), separate workbenches, really nice oscilloscopes, spools of wire and bins of small parts. Not to mention helpful technicians who can occasionally be convinced to help me replace teeny tiny parts. It pays to make friends with the technicians….
I agree — in the last building in which I had my office, I had a technician chum who had the skill and tools to do the finest work (mostly sorting out the stuff I’d messed up LOL)